Status of GEMS Calibration

Mina Kang¹, MiJin Eo¹, Myoung-Hwan Ahn¹, Xiong Liu², David Filttner³, Dai ho Ko⁴, Jhoon Kim⁵

¹Department of Climate & Energy Systems Engineering, Ewha Womans University ²Harvard–Smithsonian Center for Astrophysics, Cambridge, MA, USA ³NASA Langley Research Center, Hampton, VA, USA ⁴Korea Aerospace Research Institute ⁵Department of atmospheric science, Yonsei University

이화여자대학교 EWHA WOMANS UNIVERSITY

2017 GEMS Science Meeting (2017.09.25~09.27)

Contents

Current status of L0-L1b processor

Spectral Calibration

- Characterization of SRFs
- Solar reference spectrum
- Stray light Correction
- Summary and Discussion

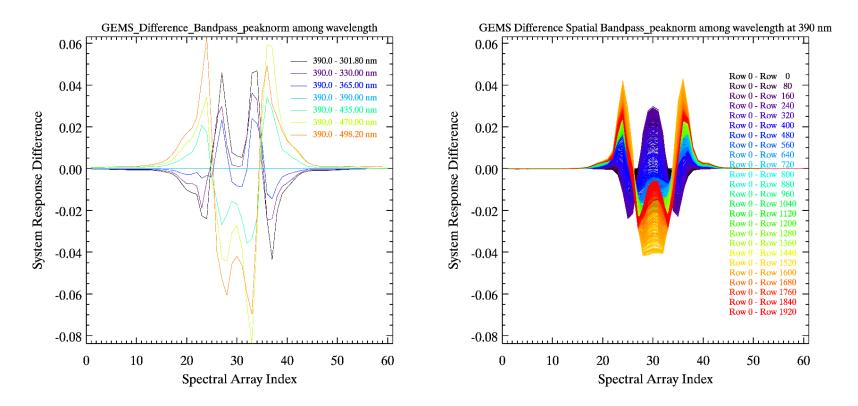
L0-L1b processor

Achievement (%)	0	20	40	60	80	100
Raw to L0						
Hot/Dead/RTS						
Co-adding correction						
LED/Linearity/Gain						
Offset/Smear/Dark current						
QE/PRNU/Integration time						
Stray light						
Spectral Registration						
Radiance calibration coefficient						
Band pass						
Spectral shift						
Measurement Noise						
Spatial Registration						
Goniometry						
Nominal BTDF						
Reference Diffuser Trend						
Main algorithm						

L0-L1b processor

All 16 sub algorithms has been prepared (KARI)

- ✤Many of algorithms are comparable with TEMPO.
- No forward model is provided
 - >End to end performance test is limited.
- Several algorithms require improvement and optimization.
 - Update of solar reference spectrum & Accurate characterization of in-obrit SRFs for wavelength calibration
 - Stray light correction for 2D [spatial, spectral]


GEMS Ground-SRFs

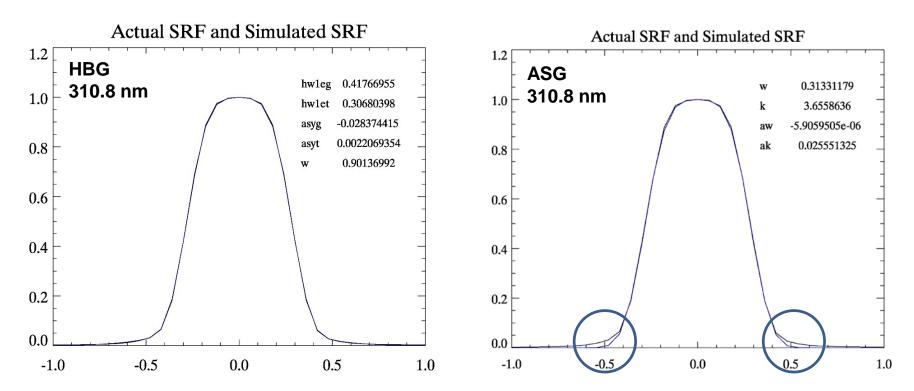
The slit functions are provided for the 7 selected nominal wavelengths (nm)

>[301.8, 330.0, 365.0, 390.0, 435.0, 470.0, 498.2]

For each nominal wavelength the slit function is given over an interval of -1.80 nm to +1.80 nm in steps of 0.06 nm, i.e. with a total of 61 data points.

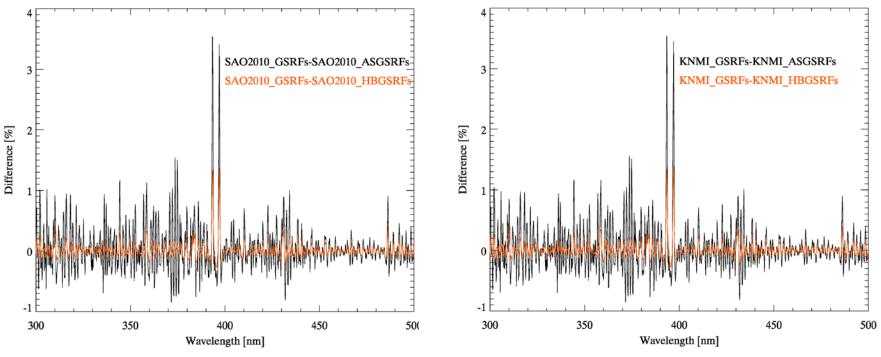
There are slight differences in the slit function in the spectral and spatial direction, although it varies smoothly

Which SRF models fit better?
 HyBrid Gaussian(HBG; Liu et al., 2015)


$$HBG_{\lambda} = \exp\left\{-\left[\frac{\Delta\lambda}{h_g(1+sgn(\Delta\lambda)a_g)}\right]^2\right\} (1-f_t) + \exp\left\{-\left[\frac{\Delta\lambda}{h_t(1+sgn(\Delta\lambda)a_t)}\right]^4\right\}f_t$$

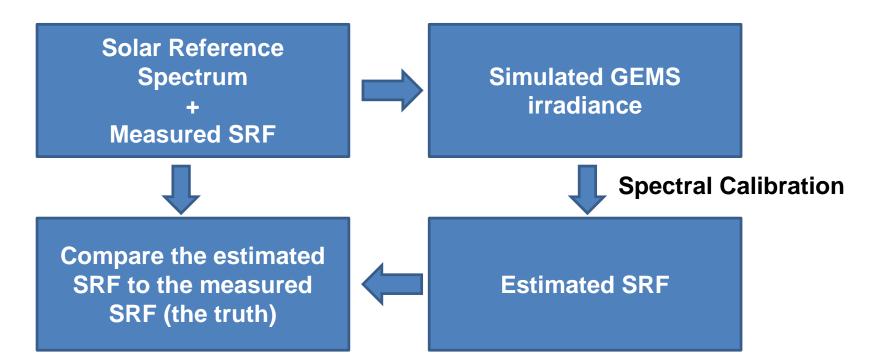
Five parameters to be determined
 Asymmetric Super-Gaussian(ASG; Beirle et al. 2016)

$$ASG_{\lambda}(x) = \frac{k}{2\varpi\Gamma(1/k)} \times \begin{cases} e^{-\left|\frac{x}{\varpi - a_{\varpi}}\right|^{k - a_{k}}} \\ e^{-\left|\frac{x}{\varpi + a_{\varpi}}\right|^{k + a_{k}}} \end{cases}$$


Which SRF models fit better?

Asymmetric Gaussian shows a off-fitting at the wings of SRF, while the HyBrid Gaussian shows an excellent fit

Which SRF models fit better?


The modeled SRFs produce GEMS-like irradiance within a percent of difference

SAO2010 (Chane and Kurucz 2010), KNMI (Dobber et al 2008)

Can SRF be estimated in space?

Using the simulated GEMS irradiances, the possibility of the SRF estimation has been tested

Simulation exercise


The actual solar irradiance and GEMS measurement are similar to the reference spectra (SAO2010 and KNMI)

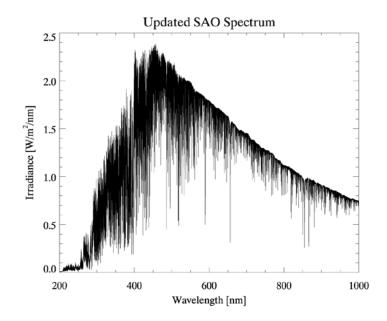
$$GEMS_{simulated} = \frac{\int SAO2010_{\lambda}\phi_{gGEMS,\lambda}d\lambda}{\int \phi_{gGEMS,\lambda}d\lambda}$$

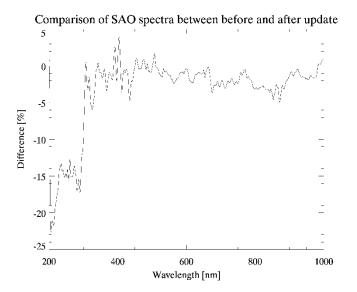
$$Reference \ spectrum = \frac{\int KNMI_{\lambda}\phi_{ASG/HBG,\lambda}d\lambda}{\int \phi_{ASG/HBG,\lambda}d\lambda}$$

$$\frac{\int SAO2010_{\lambda}\phi_{gGEMS,\lambda}d\lambda}{\int \phi_{gGEMS,\lambda}d\lambda} = \frac{\int KNMI_{\lambda}\phi_{ASG/HBG,\lambda}d\lambda}{\int \phi_{ASG/HBG,\lambda}d\lambda} \times A_{0} + A_{1}(\lambda - \lambda_{avg}) + A_{2}(\lambda - \lambda_{avg})^{2} + A_{3}(\lambda - \lambda_{avg})^{3}$$

The analytic function (ASG & HBG) could present the SRFs in spite of the reference solar spectrum uncertainty (HBG is more acceptable)

Effects on the spectral calibration


- Highly sensitive to the choice of reference solar spectrum
 - Calibration performance could be considered as lower than actual performance
 - The derived shifts could be different from actual wavelength variability


Algorithm Input		Algorithm Output		
Reference spectrum	Assumed measurement	X² (e⁻ ⁶)	ΔR (%)	
KNMI	KNMI	4.89	0.012	
SAO2010	SAO2010	5.46	0.014	
KNMI	SAO2010	275	0.077	

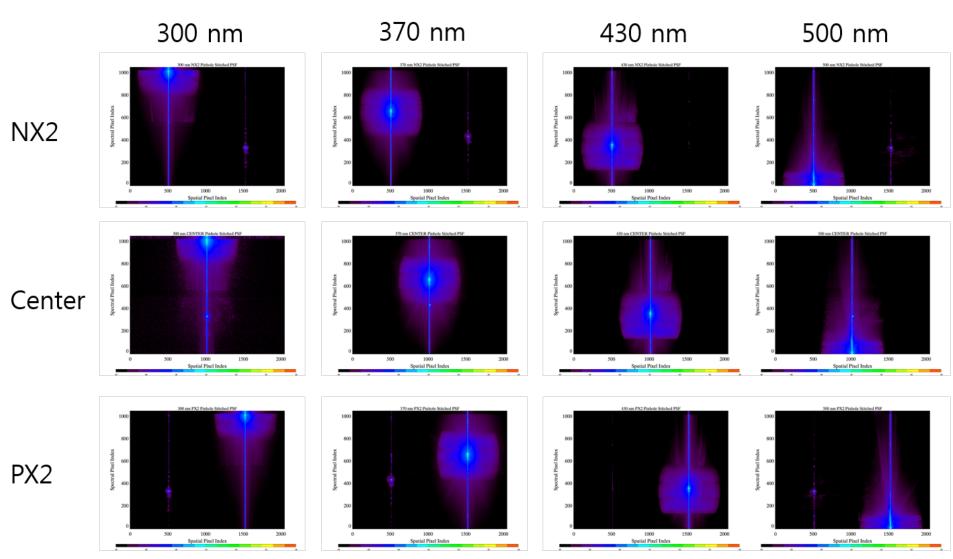
 $(\Delta R \text{ is mean differences of radiance})$

- Preparation of high resolution solar reference spectrum for TEMPO/GEMS
 - KNMI spectrum (Dobber et al 2008) cannot cover TEMPO wavelength range.
 - SAO2010 (Chance and Kurucz 2010) spectrum requires absolutely calibrated
 - The low resolution solar reference spectra, which are radiometrically accurate are used for radiometric update of SAO2010

A significant improvement in the shorter wavelength range is evident

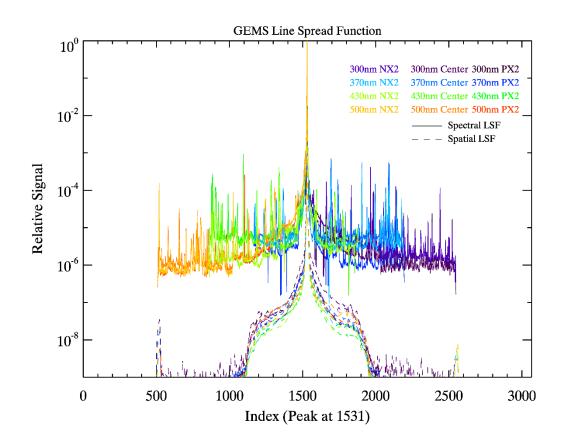
Updated SAO spectrum

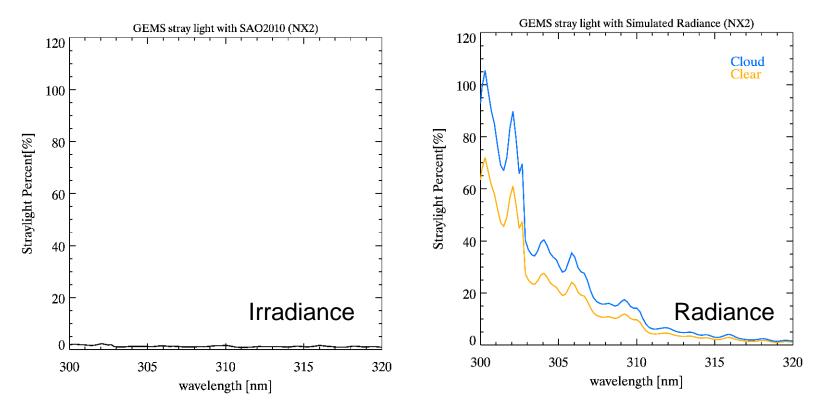
Comparison between before and after update (= $\frac{updated \ SAO2010 - SAO2010}{updated \ SAO2010} * 100(\%)$)


Comparison new SAO2010 with other reference solar spectra

Increased consistency among the spectra with the decreased mean radiometric differences

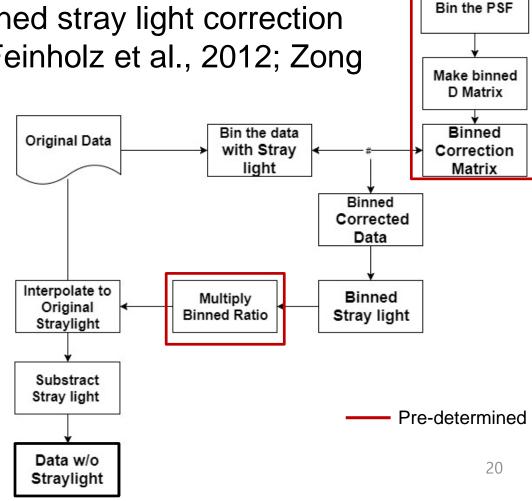
Reference Spectrum	Correlation Coefficient	Mean Radiometric Differences [%]
SAO2010/NRLSSI2	0.9659	1.7275
SAO2010/ATLAS3	0.9738	0.3223
SAO2010/KNMI	0.9464	1.6985
NewSAO2010/NRLSSI2	0.9754	1.4045
NewSAO2010/ATLAS3	0.9899	0.0854
New SAO2010/KNMI	0.9689	1.0593


Comparison among reference spectra for 300 -500 nm range at FWHM 1.0 nm


Spatial and spectral PSF

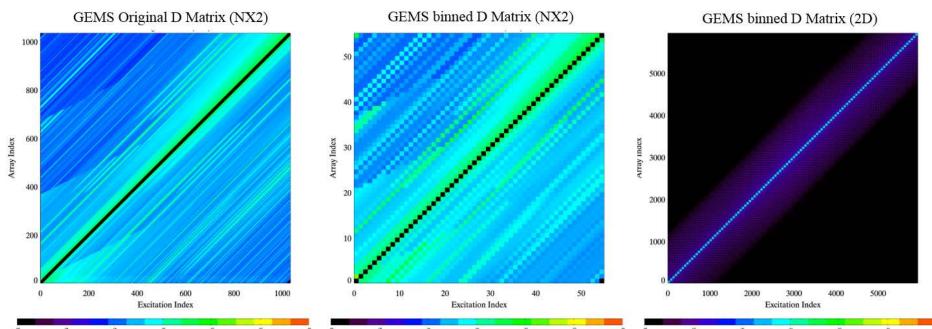
Spatial Line Spread Function(LSF), Higher Spectral LSF signal and spike

Estimated stray light

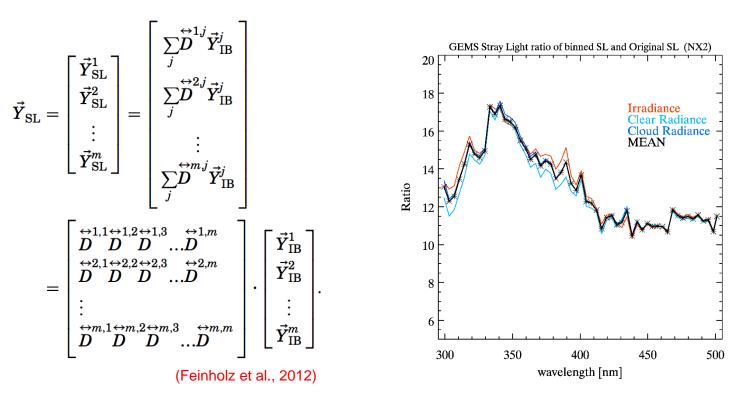

The largest stray light relative to the true signal occurs at 300.30 nm with105.7% (72.1%) at NX2 for cloudy(clear) sky radiance

2D Stray light correction

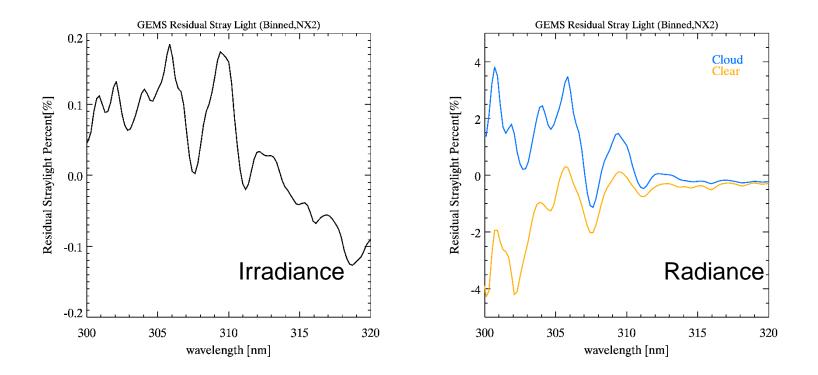
To meet time constraint and memory requirement, a binned stray light correction has been tested (Feinholz et al., 2012; Zong et al., 2007)


 $\begin{aligned} Y_{meas} &= Y_{ib} + Y_{sl} \\ Y_{meas} &= Y_{ib} + D \cdot Y_{ib} \\ Y_{meas} &= [D + I] \cdot Y_{ib} \\ Y_{ib} &= [D + I]^{-1} \cdot Y_{meas} \end{aligned}$

PSF


Binned matrix

- ✤Reduce the stray light matrix size 10¹² to 10⁷
- Choose center pixel within every 19 pixels to bin [1033,2048] -> [55,108]
- PSF for every pixel on focal plane interpolated from provided 12 GEMS PSF results


Binned matrix

Prepare the ratio between original and binned stray light (reflects the reduced trace of D matrix with binning)

Algorithm performance

Residual stray light after binning stray light correction is within 0.2 % in irradiance and 4 % in radiance for wavelengths > 300 nm

Summary and Discussion

- Most of important issues for the GEMS data quality are identified and reflected into the GEMS L0-1b processor
- Spectral calibration
 - The differences among ground-SRFs indicate that spectral variations are larger than spatial one.
 - The functions such as ASG and HBG accurately characterize the simulated in orbit SRFs
 - The solar reference spectrum has been updated
- Stray light correction
 - Prototype 2-D stray light correction based on the binned matrix approach has been tested to show a good candidate for a feasible solution

Thank you for you attention

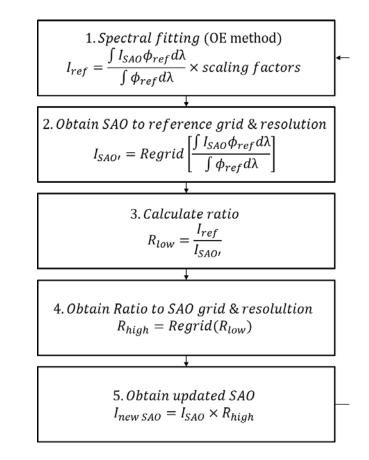
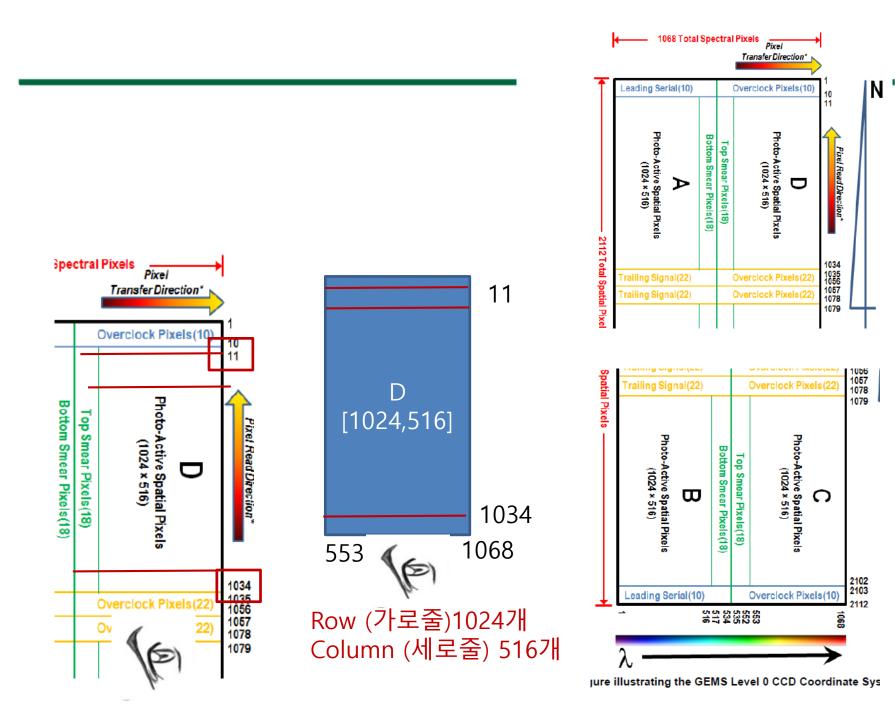
Current status

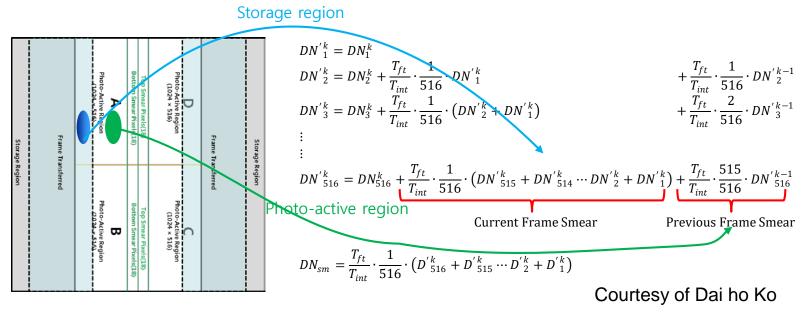
- Key issues for three important calibrations
 - Radiometric Calibration; Albedo Calibration
 - Requirements for the albedo estimation are not specifically provided
 - Spectral Calibration; Reference Solar Spectrum, SRF
 - In-orbit verification/update/monitoring of SRFs is highly required.
 - Absolutely calibrated high resolution solar reference spectrum is required to prepared.
 - Geometric Calibration; Limited number of landmark
 - Require more uniformly distributed good landmarks and better ranging information
 - Limited portion of spectral data will be used for Landmark extraction, which may introduce spectral mis-alignment
 - Correction based Rayleigh component in Earth radiance

Solar Reference Spectrum

Updating SAO2010/JPL

- Fitting the SAO2010/JPL with reference (WHI/ATLAS) to obtain SRF of reference & scaling factors; same spectral feature
- ② Convolution of the SAO2010/JPL spectrum with the derived function ;same spectral resolution
- Calculating the ratio between convolved spectrum with reference (R)
- Obtaining the new convolved SAO2010/JPL applied ratio (R') to SAO2010/JPL; new convolved SAO2010/JPL = convolved SAO2010/JPL * R


Figure. Process for updating SAO2010

Smear Correction

Scene-Based Smear Correction

- GEMS corrects the smear in consideration of the ratio between integration and frame time
 - Current frame smear & previous frame smear can reflect the variation of signal rate

